
GCP OptIC Project

Details on the submission by Stephen Roxburgh

Method overview:
The estimation method I use is actually a hybrid of two methods - a genetic algorithm (GA) followed
by downhill simplex. I have developed this method for estimating model parameters for terrestrial
carbon accounting (e.g. Roxburgh et al. 2006), among other purposes. It has been my experience that
the GA is good at scanning the available parameter space to identify the region of the ‘true’ or ‘global’
optimum (and thus avoiding the premature convergence in complex terrain that can occur with gradient
methods), but is slow to converge on a satisfactorily precise solution. I therefore run the GA first to
find a solution that is (hopefully) in close proximity to the global minimum, and then send that solution
to the downhill simplex for final ‘fine-tuning’.

Algorithms:
I use a simple continuous implementation of the GA taken from Haupt & Haupt (1998), that uses cost-
weighting selection of parents for mating, and imposes elitism (where the best solution is retained
through subsequent generations). The downhill simplex algorithm (‘Amoeba’) is taken from Press et al.
(1986). Numerical integration of the model is performed using the algorithm ‘Odeint’, also from Press
et al. (1986). The method is coded within a Borland Delphi application, custom-written for this project
(see appendix). All calculations are done using Delphi’s native 10-byte ‘extended’ data type, with 19-
20 significant digits.

Method implementation
(a) Fitted parameters
Six parameters were fitted; the four model parameters (p1, p2, k1, k2), plus the two initial conditions (x1,
x2).

(b) Cost function:
For this exercise I used two different cost-functions, to explore the sensitivity of the solutions to the
cost-function specifications.

The first was the unweighted SS:

() ()∑∑
==

−+−
10000

1

2
,,2,,2

10000

1

2
,,1,,1

t
ModtObst

t
ModtObst zzzz

The second weighted each SS by the grand mean of each z:

() ()
2

10000

1

2
,,2,,2

1

10000

1

2
,,1,,1

z

zz

z

zz
t

ModtObst
t

ModtObst ∑∑
==

−
+

−

I also tried weighting each deviation by the observed value, i.e.

() ()
∑∑

==

−
+

− 10000

1 ,,2

2
,,2,,2

10000

1 ,,1

2
,,1,,1

t Obst

ModtObst

t Obst

ModtObst

z

zz

z

zz

but a bit of trial and error found it did not produce fits as good as the first two, so for the full runs I just
used the first two.

Postscript
In response to request from Cathy Trudinger, a third cost function was run, that weighted the SS of
each xi by the SD2 (i.e. the variance) of the residuals for each dataset (that were provided):

Experiments T1, T4 and T6: 0.3, 1.5 (for x1 and x2, respectively)
Experiment T2: 0.5, 1.5
Experiment T3: 0.35, 0.6
Experiment T5: 0.35, 1.2
Experiments A, C and D: 0.8, 4.0
Experiment B: 3.0, 12.0
Experiment E: 0.4, 0.9
Experiment F: 0.07, 0.8
Experiment G: 1.0, 2.6
Experiment H: 0.7, 3.5
Experiment I: 5.0, 5.0
Experiment J: 0.7, 2.5

Postscript #2
On 17 July 2006 an additional 5 training datasets were received (T7-T11). These are incorporated into
the results tables below, and the residual SD’s are:

Experiment T7: 0.8, 2.2 (for x1 and x2, respectively)
Experiments T8, T9, T11: 0.3, 1.5
Experiment T10: 0.9, 3.0

GA:
An initial population of 600 solutions was generated at random within the allowed parameter space (as
defined by the constraints), and the cost function of each was calculated. This was to give an initial
‘shotgun’ view of the parameter space. The best 48 solutions were then retained, and allowed to evolve
for a further 250 generations (with a mutation probability of 0.03). The best solution after 250
generations was then passed onto the simplex. Note that a more flexible stopping rule could have been
adopted (e.g. keep evolving until no gain occurs after x generations), however through a little trial and
error it seemed that a constant evolution time seemed to work OK, so I kept it simple (I tried a subset of
runs with a cut-off 2000 generations, and the results were the same). Also, the downhill simplex has a
flexible cutoff (see below).

Downhill simplex:
The best solution from the GA was then fed to the simplex, that then refined it until there was no
further improvement of the cost function (controlled by the ‘Amoeba’ parameter ftol, that was set to 1e-
18).

Each of the 21 datasets was therefore optimised using two different cost functions (yielding 32 result
files). Each of these combinations was also replicated three times to check the stability of the method.
For each dataset/cost function combination the three replicate runs converged to the same solution.

Results summary: Parameters
Cost function: unweighted
Dataset Func. Min. p1 p2 k1 k2 x10 x20
T1 23924.10 1.06288 1.31055 0.22947 0.07998 6.05047 12.09362
T2 23523.07 1.06128 1.32670 0.22947 0.07976 5.92720 12.15467
T3 4512.54 1.00183 1.40424 0.22973 0.08051 6.14585 11.61704
T4 23939.32 1.06030 1.32819 0.22967 0.07976 6.29318 11.74616
T5 13089.37 1.01500 1.40759 0.23211 0.07844 1.19526 9.36268
T6 1170.10 1.04950 1.34535 0.23008 0.07899 6.08333 13.05788
T7 54160.76 1.14804 1.20464 0.22502 0.07824 5.73414 12.72616

T8 28764.02 0.60726 1.91955 0.23957 0.08481 7.02934 11.93941
T9 178.99 0.92990 1.78075 0.22698 0.07741 0.44360 0.19660
T10 99076.31 1.09258 1.21348 0.23010 0.08021 6.38371 10.99954
T11 93724.94 1.06848 0.50000 0.24823 0.08901 5.86626 12.30859
A 170403.88 2.53730 2.22170 0.11007 0.03094 4.30607 26.96224
B 1547536.65 2.37232 4.39634 0.10986 0.01098 92.35268 908.14085
C 170064.35 2.56052 2.21772 0.10974 0.03091 1.43035 6.38316
D 170105.13 2.45645 2.42764 0.10978 0.03102 5.46663 23.06772
E 7848.60 1.12640 1.56145 0.23072 0.11024 0.15850 0.05958
F 6404.38 4.61891 1.44975 0.62731 0.01101 0.21421 6.83502
G 76183.51 2.36554 2.54357 0.11051 0.03111 5.81981 25.52992
H 109742.21 2.07812 3.14642 0.11072 0.03118 13.62959 21.19807
I 503406.63 0.85319 2.43926 0.03307 0.02504 53.89397 81.16828
J 53515.18 2.37719 2.56752 0.11002 0.03110 3.56917 18.68199

Cost function: grand mean weighted
Dataset Func. Min. P1 p2 k1 k2 x10 x20
T1 2746.96 1.05157 1.33038 0.22980 0.08001 6.08063 12.05663
T2 2978.54 1.04434 1.35559 0.22979 0.07983 5.95271 12.12424
T3 688.77 1.00125 1.43383 0.22920 0.08031 5.72240 11.98472
T4 2747.05 1.05520 1.33455 0.22971 0.07981 6.30118 11.73912
T5 1611.68 1.05358 1.35588 0.23118 0.07817 4.04129 6.40832
T6 306.21 1.04250 1.36586 0.22998 0.07896 6.08090 13.01271
T7 6852.68 1.11574 1.25923 0.22548 0.07837 5.65381 12.78319

T8 3413.32 0.79133 1.46162 0.24052 0.08446 6.73858 12.19883
T9 20.26 1.00010 1.62396 0.22710 0.07722 0.41504 0.19695
T10 12052.68 1.05903 1.26759 0.23035 0.08040 6.28985 11.10415
T11 13329.42 1.06707 0.50000 0.25142 0.08871 6.07061 12.04199
A 7209.89 2.52624 2.24795 0.10998 0.03096 4.47959 26.74928
B 2603.98 2.38949 4.46801 0.10981 0.01098 88.66598 911.61734
C 6806.75 2.49972 2.33862 0.10989 0.03096 1.68064 5.98850
D 7078.03 2.45684 2.42886 0.10986 0.03101 5.85327 22.63499
E 2251.54 1.12479 1.56330 0.23084 0.11024 0.09903 0.14856
F 840.65 4.60464 1.45033 0.62929 0.01100 0.13565 7.25569
G 3680.60 2.37777 2.51325 0.11047 0.03111 5.96376 25.38052
H 4314.20 2.15378 2.94801 0.11070 0.03115 13.39137 21.45804

I 6783.81 0.89039 2.38593 0.03307 0.02504 53.79187 81.22847
J 2445.37 2.41276 2.49460 0.10984 0.03109 3.46288 18.85145

Cost function: residual SD2 weighted
Dataset Func. Min. P1 p2 k1 k2 x10 x20
T1 20329.63 1.03615 1.35915 0.23002 0.08005 6.10830 11.96787
T2 18590.21 1.02705 1.38469 0.23004 0.07991 5.96938 12.09208
T3 18057.08 1.00127 1.43467 0.22918 0.08030 5.71479 11.99123
T4 20373.34 1.04439 1.34415 0.22998 0.07992 6.31042 11.70720
T5 17482.83 1.10761 1.30442 0.22965 0.07765 5.69030 4.90413
T6 10216.29 1.03929 1.37522 0.22993 0.07895 6.09272 12.55169
T7 19192.49 1.08705 1.30891 0.22580 0.07848 5.61359 12.78677

T8 30028.06 0.97631 1.08944 0.24025 0.08375 6.47963 12.51476
T9 177.48 1.12264 1.36857 0.22680 0.07689 0.00000 1.34529
T10 1029429.31 1.10841 1.18395 0.23117 0.08004 6.56953 10.80044
T11 215756.69 1.09478 0.50000 0.25163 0.08779 6.22883 11.62094
A 20379.89 2.50697 2.29476 0.10995 0.03096 4.60254 26.48288
B 20137.71 2.39118 4.56024 0.10980 0.01098 88.39431 911.87352
C 20326.56 2.42032 2.50532 0.11002 0.03101 1.91007 5.77716
D 20326.68 2.46149 2.42907 0.10985 0.03100 6.11483 22.27543
E 15214.58 1.12412 1.56438 0.23089 0.11022 0.09737 0.15222
F 19988.89 4.60301 1.45033 0.62951 0.01100 0.11498 7.37233
G 19932.8 2.38413 2.49565 0.11047 0.03111 6.01171 25.33071
H 17348.64 2.27952 2.59140 0.11079 0.03114 13.21857 22.13616
I 20136.27 0.85319 2.43926 0.03307 0.02504 53.89397 81.16828
J 16554.86 2.44766 2.42047 0.10976 0.03107 3.40016 19.02866
NOTES:
• The estimated initial conditions for T5 were quite different to the other training sets, and visual

inspection of the observed vs. expected timelines indicated that, at least for the initial timesteps,
the observed values were biased downwards.

• T9 – difficulty in determining consistent initial conditions, due probably to lots of missing data for
both x1 and x2.

• T11 – did not converge to an internal optima within the given constraints (the estimate for p2, for
all cost functions, converged to the lower bound of 0.5.

Resetting the upper- and lower bounds of P1 and P2 [(0.95, 1.05) instead of (0.5, 5.0) for P1; (1.34,
1.36) instead of (0.5, 5.0) for P2] to give the algorithm more of a chance of finding the true
parameter values of p1=1.04 and p2 = 1.35 did not help, as both p1 and p2 then got stuck on their
respective lower boundaries. Nasty (I tried this only with residual SD2 cost function weighting).

Opening up the P2 boundaries to (0.0, 5.0) resulted in the same pattern, with the estimate for p2
now butting up against 0, with the new estimate of P1 =1.67, and with a function minimum of
212565.14, which compares with 215756.69 from the standard run.

I then went crazy, and set the bounds of p2 to (-1000.0, 5.0). This time an internal optima was
found, with the parameter estimates and function minimum given below:

Dataset Func. Min. P1 p2 k1 k2 x10 x20
T11 208688.75 3.78640 -1.39083 0.20212 0.07105 5.80484 12.41601

Results summary: Residuals
Residuals vs. time for x1 and x2 for the unweighted analysis (the patterns for the grand-mean weighted
analysis were similar).

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

A

B

C

D

E

F

G

H

I

J

References
Haupt, R. & Haupt, S. 1998. Practical genetic algorithms. John Wiley & Sons.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. 1986. Numerical recipes, the art

of scientific computing. Cambridge Univ. Press, Cambridge.

Roxburgh, S.H., Wood, S.W., Mackey, B.G., Woldendorp, G., Gibbons, P. In press. Assessing the

carbon sequestration potential of managed forests: a case study from temperate Australia. Journal
of Applied Ecology.

Appendix – Screen shot of the program interface
Program interface for the OptIC project. The list of numbers on the RHS are the ranked finesses of the
48 solution populations from the GA. The top two charts are the residuals. The bottom chart is the
observed and modelled data, including the extension of the modelled data up to 12000 timesteps.

